Скачать 

[Слёрм] Machine Learning (Александр Михеев, Юлия Силова)

Зарегистрируйтесь, чтобы посмотреть скрытый контент
Организатор
Организатор
Организую Складчины
Команда форума
Сообщения
603 850
Реакции
13 029
Монеты
325
Оплачено
1
Ссылка на картинку

Вы освоите современные инструменты для анализа данных и создадите свои первые модели машинного обучения

Практик и знаний, которые вы получите, будет достаточно, чтобы самостоятельно решать задачи классического ML и начать карьеру.

Кому подойдёт курс:

Наш курс рассчитан на программистов, которые хотят переквалифицироваться и начать решать задачи с помощью Машинного Обучения.

Вы сможете:

1. Получить востребованные знания и сменить вектор профессионального развития
2. Добиться улучшений на текущем месте, применяя методы ML
3. Определиться, нравится ли вам работать в сфере машинного обучения

Чему Вы научитесь:

1. Работать с Machine Learning
Узнаете, что такое Машинное Обучение и чем оно отличается от обычного решения задач в программировании. Разберётесь в задачах регрессии, классификации и кластеризации
2. Аналитически мыслить
Научитесь самостоятельно разрабатывать план решения проблемы, выдвигать и проверять гипотезы, интерпретировать результаты и представлять их руководству.
3. Подготавливать данные
Поймёте, какие бывают типы данных и в чём заключаются их особенности. Научитесь работать с данными средствами Python
4. Извлекать данные из разных источников
Поймёте, как читать файлы различных форматов при помощи Python и библиотеки Pandas
5. Строить модели машинного обучения
Освоите алгоритмы машинного обучения. Построите свои первые модели.
6. Работать с последовательностями
Научитесь прогнозировать временные ряды и создавать рекомендательные системы

Программа:

Тема 1 : Введение в Machine Learning

1.1. Как устроен этот курс и чему вы научитесь. Что такое Машинное Обучение, чем оно отличается от обычного решения задач в программировании? Чем отличается анализ данных и ML?
1.2. О Python, типичный цикл разработки, демонстрация установки и настройки окружение.

Тема 2: Основы анализа данных
2.1. Типичное представление данных.
2.2. Основы работы с pandas.
2.3. Подсчет статистик по текстовым данным.
2.4. Изучение Matplotlib.

Тема 3: Простые модели
3.1. Линейные модели, задача регрессии, задача классификации.
3.2. Нелинейные модели. Часть 1.
3.3. Нелинейные модели- нейронные сети. Часть 2.
3.4. О Pytorch и GPU.

Тема 4: Работа с изображениями
4.1. Проблема с изображениями и комбинаторный взрыв. Фундаментальные задачи снижения размерности.
4.2. Сегментация классов, сегментация объектов, описание объектов, идентификация.
4.3. Разные виды функций потерь (loss function)
4.4. Генерация изображений с помощью VAE и теорема Байеса.

Тема 5: Работа с последовательностями
5.1. Временные ряды и задачи прогнозирования. Подход с не итеративными моделями и с RNN.
5.2. Обработка текста часть 1. Классификация, перевод. Подходы основанные на полносвязных нейронных сетях и на основе RNN.
5.3. Обработка текста часть 2. Сходство текста, генерация текста по тексту, генерация текста по картинке, генерация картинки по тексту и способы решения этих задач. Коротко о механизме внимания и трансформерах.

Тема 6: Дополнительно
6.1. Коротко о тех вещах, которые не вошли в этот курс: задачи поиска и рекомендаций, обучение с подкреплением, архитектура систем ML, GAN.
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть авторский контент.
Поиск по тегу:
Теги
machine learning александр михеев анализ данных жизнь квантовая квантовая жизнь машинное обучение модели машинного обучения нейросети обучение нейросетей программимрование слёрм юлия силова
Похожие складчины
Найти больше схожих складчин

Зарегистрируйте учетную запись

У вас появится больше возможностей!

Создать учетную запись

Пройдите быструю регистрацию

Войти

Уже зарегистрированы? Войдите.

Сверху