Скачать 

Машинное обучение для алгоритмической торговли на финансовых рынках. Практикум (Стефан Янсен)

Зарегистрируйтесь, чтобы посмотреть скрытый контент
Организатор
Организатор
Организую Складчины
Команда форума
Сообщения
606 782
Реакции
13 133
Монеты
325
Оплачено
1
Ссылка на картинку
Пер. с англ. Логунов А. — СПб.: БХВ-Петербург, 2020. — 560 с. — ISBN 978-5-9775-6595-0.
Книга посвящена практике применения машинного обучения с целью создания мощных алгоритмических стратегий для успешной торговли на финансовых рынках. Изложены базовые принципы работы с данными: оценивание наборов данных, доступ к данным через API на языке Python, доступ к финансовым данным на платформе Quandl и управление ошибками предсказания.
Рассмотрены построение и тренировка алгоритмических моделей с помощью Python-библиотек pandas, Seaborn, StatsModels и sklearn и построение, оценка и интерпретация моделей AR(p), MA(q) и ARIMA(p, d, q) с использованием библиотеки StatsModels.
Описано применение библиотеки PyMC3 для байесового машинного обучения, библиотек NLTK, sklearn (Scikit-learn) и spaCy для назначения отметок финансовым новостям и классифицирования документов, библиотеки Keras для создания, настройки и оценки нейронных сетей прямого распространения, рекуррентных и сверточных сетей.
Показано, как применять трансферное обучение к данным спутниковых снимков для предсказания экономической активности и как эффективно использовать подкрепляемое обучение для достижения оптимальных результатов торговли.
Вы научитесь:
Реализовывать технические методы машинного обучения для решения инвестиционных и торговых задач
Использовать рыночные, фундаментальные и альтернативные данные с целью исследования альфа-факторов
Конструировать и тонко настраивать автоматически обучающиеся контролируемые, неконтролируемые и подкрепляемые модели
Оптимизировать портфельный риск и результативность с помощью библиотек pandas, NumPy и scikit-learn
Интегрировать автоматически обучающиеся модели в живую торговую стратегию на платформе Quantopian
Оценивать стратегии с использованием надежных методологий тестирования временных рядов
Конструировать и оценивать глубоко обучающиеся нейронные сети с помощью библиотек Keras, PyTorch и TensorFlow
Работать с подкрепляемым обучением для торговых стратегий на платформе OpenAI Gym
Формат: DJVU
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть авторский контент.
Поиск по тегу:
Теги
машинное обучение для алгоритмической торговли стефан янсен трейдинг
Похожие складчины
Организатор
Ответы
0
Просмотры
65
Организатор
Организатор
Найти больше схожих складчин

Зарегистрируйте учетную запись

У вас появится больше возможностей!

Создать учетную запись

Пройдите быструю регистрацию

Войти

Уже зарегистрированы? Войдите.

Сверху